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We present direct multipoint velocity measurements of the two-dimensional velocity
field in the central region of turbulent Rayleigh–Bénard convection. The local
homogeneity and isotropy of the velocity field are tested using a number of criteria
and are found to hold to an excellent degree. The properties of velocity circulation Γr

are also studied. The results show that the circulation appears to be more effective in
capturing the effect of local anisotropy than the velocity field itself. The distribution
of Γr is found to depend on the scale r , reflecting strong intermittency. It is further
found that the velocity circulation has the same anomalous scaling exponents as
the longitudinal and transverse structure functions for low-order moments (p � 5),
whereas, for high-order moments (p � 5), the anomalous scaling exponents for
circulation are found to be systematically smaller than the scaling exponents of
the longitudinal and transverse structure functions.

1. Introduction
An important issue in the study of fluid turbulence is to find the universal or

quasi-universal properties of small-scale turbulence. A well-known quantity that may
be used to characterize these properties is the velocity structure function (SF),

Sp(r) = 〈|V (x + r) − V (x)|p〉, (1.1)

where V (x) is one of the components of the velocity vector at position x, and r is
the separation vector. When r is in the direction of V (x), we have SL

p (r), the so-called
longitudinal velocity structure function (LSF), while the transverse velocity structure
function (TSF), ST

p (r), is obtained if the direction of V (x) is perpendicular to r .
Assuming a scale-independent dissipation rate of the turbulent energy, Kolmogorov
(1941) (K41) proposed that for homogenous and isotropic turbulence the velocity SFs
scale as Sp(r) ∼ rζp = rp/3 in the inertial range η � r � L, where η is the Kolmogorov
scale characterizing the dissipative scale of the motion and L is the scale of energy
injection. However, anomalous scaling, a nonlinear p-dependence of ζp , was later
observed experimentally, and has been attributed to the so-called intermittency effect.

Another quantity, which can also be used to characterize the cascades in small-scale
turbulence, is the velocity circulation, defined as

ΓA =

∮
C

V · d� =

∫
A

ω · dA, (1.2)

where A is a plane region enclosed by the contour C, d� is the line element along
the contour C and ω = ∇ × V is the vorticity field. Here, a square region with side



362 Q. Zhou, C. Sun and K.-Q. Xia

length r is chosen and thus ΓA can be considered equal to Γr without ambiguity.
If the circulation is Gaussian distributed, meaning it has no intermittency, then the
circulation structure function (CSF) should scale as Gp(r) = 〈|Γr |p〉 ∼ r4p/3, according
to K41 arguments. However, in the real situation the existence of intermittency also
leads to anomalous scaling. On the other hand, since Γr is an accumulation of the
vorticity over a square region A, the velocity circulation is an ideal quantity to study
both velocity and vorticity in small-scale turbulence as well as useful to study the
spatial structures of vortex dynamics. In fact, from dimensional analysis it can be
shown (Sreenivasan, Juneja & Suri 1995) that

Gp(r) ∼ ST
p (r)rp. (1.3)

Equation (1.3) implies that velocity circulation would have the same degree of
intermittency with transverse velocity increment. There have been a limited number
of studies on the scaling properties of velocity circulation. Sreenivasan et al. (1995)
experimentally measured the velocity circulation in moderate-Reynolds-number
turbulent wakes and found that the scaling exponents of circulation are smaller
than the expected SF exponents plus p. Cao, Chen & Sreenivasan (1996) found
numerically that the circulation is more intermittent than the longitudinal velocity
increment, which suggests that there may exist a new class of anomaly. Separate
numerical and experimental studies (Chen et al. 1997; Grossmann, Lohse & Reeh
1998; van der Water & Herweijer 1999) found that the TSFs are more intermittent
than LSFs. Chen et al. (1997) further argued that two independent sets of exponents,
one associated with the LSF and the other with the TSF (which may be related to
CSF via (1.3), if it holds), may be required to describe the scaling of all small-scale
features. In this scenario they conjectured that the LSF is related to the local energy
dissipation εr and the TSF is related to the local enstrophy Ωr , and the two sets
of exponents correspond to different intermittency physics in fluid turbulence. On
the other hand, using extended self-similarity analysis, Benzi et al. (1997) showed in
a numerical turbulent shear flow that CSFs have the same anomalous contribution
as the velocity SFs. It should be noted, however, that in the previous studies there
has been no direct comparison between the CSF and TSF (LSF) experimentally
measured from the same flow field. Therefore, how many independent scaling groups
are needed to completely characterize all ‘universal’ features in small-scale turbulence
remains an open question. From the point of view of validating various ideas and
concepts in the studies of hydrodynamic turbulence, it is also important that these
ideas and concepts should be tested in different types of turbulent flows, such as
buoyancy-driven turbulence.

As an important class of turbulent flows, turbulent Rayleigh–Bénard convection
(RBC), which is a fluid layer heated from below and cooled on the top, has been
a well-controlled model system for studying buoyancy-driven turbulence and has
attracted much attention during the past few decades (see, for example, Siggia 1994;
Kadanoff 2001). Convective turbulence differs from other types of turbulent flows,
such as turbulent shear flows and grid-generated turbulence, in many ways, but
shares some common features with high-Reynolds-number turbulence, especially in
the central region of the system where turbulent flow is far from the solid walls (plates
and sidewalls) of the system and so the shear effect should be weak. In addition, the
large-scale circulation is also concentrated near the perimeter of the cell and so its
shear is also weak in the central region. As will be shown in this paper, as turbulent
flow in the central region of RBC is approximately homogenous and isotropic, this
system provides an ideal platform to study the general scaling properties of small-
scale turbulence such as velocity circulation. Owing to the buoyancy effect, cascades
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of velocity fluctuations in turbulent RBC are more complicated than those in non-
buoyancy-driven turbulent systems, such as turbulent shear flows and grid-generated
turbulence, and have been extensively studied in the past half century. Bolgiano
(1959) and Obukho (1959, BO59) proposed that for stably stratified convection there
is a length scale �B that divides the cascades of turbulent velocity and temperature
fluctuations in the inertial range into two different dynamic regimes: above �B the
buoyancy force is important and one expects the relation Sp(r) ∼ r3p/5; below �B

the inertial force becomes dominant and one expects to observe the K41 scaling.
Whether BO59 scaling exists in a turbulent Rayleigh–Bénard system has been a
long-standing debate. In recent direct multipoint measurements of the velocity and
temperature fields Sun, Zhou & Xia (2006) found that in the cell centre the velocity
exhibits the same scaling behaviour as in homogeneous and isotropic Navier–Stokes
turbulence, while in the vertical direction, near the sidewall, SL

p (r) is found to scale

as SL
p (r) ∼ r2p/5 plus intermittency corrections, which is neither BO59- nor K41-like

behaviour and could be understood as a result of the coaction of buoyancy and
inertial forces. Therefore, it appears that BO59 does not exist in the present range of
Ra and Pr .

The remainder of this paper is organized as follows. We give detailed descriptions
of the experimental setup in § 2 and present and analyse experimental results in
§ 3, which is divided into three parts. In § § 3.1 and 3.2, we present several detailed
tests and evidence, without invoking Taylor’s hypothesis, to support a conclusion of
Sun et al. (2006) that the convective flow in the central region of turbulent RBC is
approximately locally homogenous and isotropic. In Sun et al. (2006), some of the
evidence used to support this conclusion was simply given without showing how it
was obtained. Section 3.3 discusses the scaling properties of velocity circulation. We
summarize our findings and conclude in § 4.

2. Experimental setup and parameters
The multipoint velocity measurements were carried out in the centre of an RBC

cell using the technique of particle image velocimetry (PIV). Both the cell and the
technique have been described in detail in Sun, Xia & Tong (2005) and Sun et al. (2006)
and thus we give only their main features here. The cell is a vertical cylinder of height
H = 19.3 cm and diameter D = 19 cm (the aspect ratio is thus ∼ 1). The top and
bottom plates are made of copper with thickness 1 cm and gold-plated surfaces and
the sidewall is made of 5 mm thick Plexiglas tube. Deionized and degassed water was
used as convecting fluid. A square-shaped jacket made of flat glass plates and filled
with water is fitted round the sidewall, which greatly reduced the distortion effect
to the PIV images caused by the curvature of the cylindrical sidewall. During the
measurements the convection cell was placed inside a thermostat box which was kept
at the mean temperature (40◦C) of the convecting fluid. In the PIV measurements,
50 µm diameter polyamid spheres (density 1.03 g cm−3) are used as seed particles
and the laser lightsheet thickness is ∼0.5 mm. The spatial resolution of the velocity
measurement is 0.66 mm, which is much smaller than the length scale of the lower
end of the inertial range and hence is adequate to reveal the scaling properties
in the inertial range, and the selected measuring area in the cell centre is 4 × 4 cm2

(figure 1), corresponding to 61×61 velocity vectors. Denote the laser-illuminated plane
as the (x, z)-plane, then the horizontal velocity component u(x, z) and the vertical
one w(x, z) are measured.

The dynamics of the system depends on the Rayleigh number, defined as
Ra = αgH 3�/νκ , and the Prandtl number, defined as Pr = ν/κ , where g is the
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Figure 1. (a) Coordinate system and an example of a shadowgraph image showing the spatial
distribution of thermal plumes in an aspect-ratio-one cell. The blue curves above and below
the image illustrate the geometric shape of the convection cell. (b) An instantaneous vector
map of the velocity field measured in the selected area shown in pink in (a).

acceleration due to gravity, � the temperature difference across the cell, and α,
ν, and κ , respectively the thermal expansion coefficient, the kinematic viscosity,
and the thermal diffusivity of the working fluid, which is water. The experiment
was done at Ra = 7.0 × 109 and Pr =4.3. At these values, the global estimate of
the Kolmogorov scale is η = HPr1/2/(RaNu)1/4 ≈ 0.4mm and that of the Bolgiano
scale �B = HNu1/2/(RaPr)1/4 ≈ 5 mm (e.g. Cioni, Ciliberto & Sommeria 1995). The
measurement lasted 1 hr, corresponding to an acquisition time of around 120 turnover
times of the large-scale circulation. A total of 7500 vector maps were acquired with
sampling frequency 2 Hz. Figure 1(b) shows a typical example of these vector maps.

3. Results
3.1. Homogeneity

High-order moment statistics of small-scale turbulence, such as velocity increments,
usually needs a very large sample size to determine accurate temporal-averaged
values. However, such a large sample is very difficult to acquire for multipoint velocity
measurements, because of the limited sampling rate of the instruments. Nevertheless, if
the flow is locally homogeneous, Sp(r) and Gp(r) are then independent of the position
x and one may use spatial average instead of temporal average. The turbulent flow
is locally homogenous if the N-point joint probability density function (PDF) of
δVr = V (x + r)−V (x) for varying values of r is independent of x for every fixed
N (Monin & Yaglom 1975). In Sun et al. (2006) we stated that the two-point and
three-point joint PDFs are found to be independent of x and r without showing the
actual results. In figure 2 these measured PDFs are shown for four different values of
x for u(x, z) and w(x, z). All these PDFs collapse on top of each other, except some
scatter near the tails which is probably due to the limited statistics (there are only
7500 samples for each velocity component). Thus, one may take the superposition
of these PDFs as evidence for the approximate satisfaction of local homogeneity.
Note also that the two-point PDFs have asymmetric tails with the positive tail being
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Figure 2. N-point joint PDFs for (a, c) u(x, z) and (b, d) w(x, z) with N = 2 (a, b) and N = 3
(c, d). Here r1 = r3 = 25η and r2 = 15η. Four symbols (circles, squares, up-triangles and
down-triangles) are used for four different values of x.

larger than the negative one, which is due to the fact that there is certain degree of
correlation between the velocity increments.

3.2. Isotropy

Isotropy is the central hypothesis for many theories and models of small-scale
turbulence, such as the theory advanced by Kolmogorov (1941). For isotropic
turbulence, the statistical properties of the flow are invariant with respect to rotations
and reflections of the coordinate axes. The scaling properties of LSFs and TSFs
in the central region of the cell and their comparison with other theoretical and
experimental results have been reported and discussed in detail in Sun et al. (2006).
Those results implied that the turbulent flow is approximately isotropic in the cell
centre. Here, we present more evidence to support this conclusion. To the extent
possible we follow the definitions of Sun et al. (2006) in the present paper, e.g.
SL,w

p (r) = 〈|w(x, z + r) − w(x, z)|p〉 is defined as the pth-order LSF for w and its

exponent is ζL,w
p , etc.

Isotropy implies that when viewed from different directions, the values of LSFs
or TSFs should be the same at some length scale r if the turbulent flow is locally
isotropic at that scale. To check this, LSFs for two different (horizontal and vertical)
directions of the order p = 2 and 4 are plotted in figure 3(a) and the corresponding
TSFs are shown in figure 3(b); the structure functions are compensated by (r/η)p/3

to increase the sensitivity of the test. The two arrows in figure 3 indicate the inertial
range, which is operationally determined as the range of scales within which the
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Figure 4. (a) A comparison of directly measured second-order TSF S
T,u
2 (r) (solid line) and

that calculated from the second-order LSF S
L,u
2 (r) via (3.1) (circles). (b) The relative error

between the two quantities plotted in (a).

third-order structure function exhibits power-law scaling. Coincidentally, the lower
end of this range is around 10η. From figure 3 one sees that the compensated LSFs
or TSFs of the same order for the x- and z-directions almost collapse onto each other
in the inertial range. This is consistent with the instantaneous velocity field shown
in figure 1(b) from which one cannot tell which direction is vertical and which is
horizontal.

A simple but important and sensitive criterion for local isotropy is given by the
following kinematic relationship between the second-order LSFs and TSFs (Monin
& Yaglom 1975),

ST
2 (r) = SL

2 (r) + (r/2)
(
∂SL

2 /∂r
)
, (3.1)

since it is an invaluable and exact source of many known results. In Sun et al. (2006)
we have shown that the above relationship holds approximately in an average sense
over the inertial range. Here we make a more stringent test of the above functional
relationship, i.e. the functions on each side should be the same for some scale r if
the flow is isotropic at that scale. Figure 4(a) compares the directly measured second-
order TSF (solid line) and the second-order TSF (circles) according to (3.1). The figure
shows that (3.1) holds excellently not only in the inertial range but also for the largest
values of r reached in the present measurements (note that the size of the measuring



Homogeneity, isotropy and circulation in buoyancy-driven turbulence 367

area is much smaller than the system size). This can also be seen from figure 4(b) where
the relative error between the directly measured TSF and that according to (3.1) are
shown to be within 2.5% in the inertial range. Another criterion for local isotropy is
that the cross-correlation function Cz(r) = 〈w(x, y, z)u(x, y, z+r)〉/

√
〈w2〉〈u2〉 between

horizontal and vertical velocities vanishes in the inertial range (Monin & Yaglom
1975). Here, we find that in the inertial range Cz(r), decreasing from 0.04 to 0.01, is
indeed close to zero.

From the above results and discussion, we can conclude that the anisotropic effects
in the inertial range are very weak for the central region of the turbulent RBC. This
may be understood from the spatial distribution of thermal plumes, which has been
found experimentally to be inhomogeneous in a closed cell (Qiu & Tong 2001; Shang
et al. 2003, 2004). Figure 1(a) shows a typical example of a shadowgraph image (Xi,
Lam & Xia 2004; the fluid dipropylene glycol, Pr = 596, is used because of its large
shadowgraphic contrast compared with water) showing plumes’ spatial distribution
with warm plumes rising up one side of the cell (left side) and cold plumes falling
down the other side of the cell (right side). The warm and cold plumes are separated
laterally in the two opposing sidewall regions by the central core region and hence
thermal plumes hardly appear in the central region. Since buoyancy force is exerted
on the fluid mainly via thermal plumes, it is not surprising to find that the turbulence
is nearly isotropic in the centre of the convection cell. Nevertheless we caution that
the present measurements are only two-dimensional and made within the circulation
plane of the large-scale circulation. Whether the velocity shows a different behaviour
in planes with other orientations can only be answered by future three-dimensional
measurements. It should also be noted that the present finding of a weak anisotropy
is based on tests involving mostly low-order statistical moments of the velocity and
a small amount of anisotropy may appear in higher-order statistical moments. To
quantify the degree of anisotropy requires more sophisticated method such as the
SO(3) group decomposition which may be used to disentangle systematically the
isotropic and the anisotropic contributions by projecting the structure function of
a given order over a particular spherical harmonic base (Arad, L’vov & Procaccia
1999b). This tool has been quite successful in quantifying the relative and absolute
degrees of anisotropy of velocity fluctuations (Grossmann et al. 1998; Arad et al.
1998, 1999a; Kurien et al. 2000; Grossmann, von der Heydt & Lohse 2001) and in
extracting anisotropic flow structures (Biferale et al. 2002). In turbulent convection
the amount of anisotropy may be small in the central region but it may become
significant near the boundaries. Regardless of the region of study, to separate and
quantify the isotropic and the anisotropic parts of the flow field in this system, the
SO(3) group decomposition method may have to be used in future studies.

3.3. Velocity circulation

The small-scale intermittency of the circulation fluctuations can be characterized
by their distributions over different scales. The PDF for velocity circulation was
first theoretically studied by Migdal (1994). Invoking the law of large numbers, he
predicted that Γr should be Gaussian-distributed if r is large enough, such as in the
inertial range. Sreenivasan et al. (1995) found that the PDF of Γr is close to Gaussian
in the inertial range in moderate-Reynolds-number turbulent wakes. However, Cao
et al. (1996) suggested that the arguments for Gaussianity based on the law of large
numbers are questionable in the inertial range, because the circulation Γr consists of
vorticity with all scales up to r . Then using the DNS data they showed that the PDF
of Γr does depend on the area A = r2 enclosed by the contour C, varying from the
exponential distribution in the small scales (close to the dissipative scale) to the nearly
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Figure 5. (a) PDFs of the velocity circulation Γr , from top to bottom, for r = 1.6η (close to
the dissipative scale), 25η (inertial range) and 90η (large scale). The PDFs have been shifted
vertically for clarity. The dashed curve is a Gaussian fit to the PDF for r = 90η. (b) Flatness
of the longitudinal velocity increment δwL

r (circles), of the transverse velocity increment δuT
r

(squares) and of the circulation Γr (triangles) as functions of r .

Gaussian distribution in the large scales. Later, Benzi et al. (1997) reported the same
results in a numerical study of turbulent shear flow. However, this scale-dependent
distribution has not found experimental support so far.

In figure 5(a), we show experimentally measured PDFs of the circulation
fluctuations for three different scales r , ranging from r/η = 90 (large scale), through
25 (typical inertial scale) down to 1.6 (close to dissipative scale). It is seen that the
PDF clearly deviates from the Gaussian distribution when r is close to the dissipative
scale (r = 1.6η) or in the inertial scale (r = 25η), and that it is approximately a
Gaussian when r is close to the integral scale (r = 90η). This suggests that these
PDFs depend on the scale r and are not self-similar, reflecting strong intermittency.
A relatively sensitive measure of intermittency is given by the flatness. By definition,
the flatness of a Gaussian-distributed quantity is 3. Figure 5(b) plots the measured
flatness of the circulation F (Γr ) = 〈(Γr )

4〉/〈(Γr )
2〉2 and those of the longitudinal and

transverse velocity increments δwL
r and δuT

r . It is seen that all three flatnesses decrease
with the scale r and are larger than the Gaussian value, especially in the inertial range.
The figure also shows that, at the level of flatness, the three quantities, i.e. δwL

r , δuT
r

and Γr have roughly the same degree of intermittency in the inertial range. This is in
contrast to the finding by Cao et al. (1996) that the flatness of Γr is distinctly larger
than that of the velocity increments.

Based on the properties of the measured flatness, one may expect that CSFs, LSFs
and TSFs should have the same anomalous scaling exponents. To study the scaling
behaviours of Γr , the CSFs Gp of order 1 to 8 are plotted as functions of r in figure
6(a), which are seen to exhibit nice power laws in the inertial range (between the two
dashed lines). The local scaling exponents of order 1 to 4 are shown in figure 6(b),
which are nearly constants in the inertial range. It is also noted that the scaling range
exhibited by CSFs is larger and the qualities of the present power laws are better
when compared with those of LSFs and TSFs. To examine the relationship between
CSFs and TSFs, we note that if (1.3) is valid, the quantity Gp(r)/[ST

p (r)(r/η)p] should

then be independent of r . Figure 7(a) shows the log-log plot of Gp(r)/[ST,u
p (r)(r/η)p]

vs. r for p = 1 to 8. In the inertial range, the slopes of power-law fits for p � 5 are
0.02, 0.03, 0.06, 0.05 and −0.09, which are very close to the value of 0, while the slopes
for p > 5 deviate from 0 markedly. Note that if Gp(r) ∼ rχp and ST

p (r) ∼ rζT
p in the
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inertial range, then (1.3) also implies that χp = ζ T
p + p. Figure 7(b) shows the scaling

exponents χp − p as a function of the moment order, p, compared with ζL,u
p and

ζ T,u
p . The figure shows that at the present level of sensitivity the circulation does not

exhibit a different anomalous scaling from both longitudinal and transverse velocity
increments for low-order moments (p � 5). This result is consistent with the result
of Benzi et al. (1997), who found that the anomalous components of the velocity
circulation and the velocity structure functions are equal (however, the highest p

reached in their work is 6). Note that our result is a direct and stronger test of (1.3),
while Benzi et al. used an indirect extended self-similarity method in their analysis
due to the lack of a clear scaling for both CSF and SF. For high-order moments
(p � 5), however, χp − p is systematically smaller than the exponents of TSFs and
LSFs, indicating a departure from (1.3).

To understand the differences between the exponents of CSFs and those of LSFs
and TSFs for high-order moments, we examine the integration kernel Γ p

r P (Γr ) of
Gp(r), which is shown in figure 8 for p = 6 and p = 8. First, the figure shows that
the CSFs exhibit very good convergence even for p = 8. The figure also shows that
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Γ p
r P (Γr ) is very asymmetric for p = 8 (for p = 6 there is already a small kink on the

left peak). This is in sharp contrast to the velocity increments (see figure 1 of Sun et al.
2006); there it is shown that the integration kernels for TSFs are quite symmetric.
Symmetry of the integration kernel also implies isotropy (at least in two opposite
directions). Therefore, it appears that the CSFs are able to capture anisotropic effects
more effectively than SFs, though these effects are very weak in our case. It has
also been argued previously that circulation is more sensitive to coherent structures
like filaments (plumes in the present case) than structure functions, which are one-
dimensional cuts of three-dimensional turbulence (Sreenivasan et al. 1995). Note that
(1.3) is based on dimensional arguments and mathematically it implies that the CSF
and TSF have the same distribution and hence the same degree of intermittency.
But in fact, as circulation is an area integration of transverse velocity increments, the
presence of intermittency and/or correlation among transverse velocity increments
may invalidate (1.3). Therefore the departure from (1.3) could be due to two factors:
one is intermittency and the other is that CSF is more effective in capturing coherent
objects that are also anisotropic, as discussed above. The fact that the CSF exponents
are different from the SF exponents only for larger p is probably because both
of the above two factors are usually manifested as the non-Gaussian tails in the
PDFs (exponential-like tails for intermittency and asymmetric tails for small-scale
anisotropy) that are captured better by the high-order moments.

4. Conclusions
In summary, we have experimentally measured the two-dimensional velocity field in

the central region of turbulent RBC and investigated the scaling features of velocity
circulation without invoking Taylor’s hypothesis. The local homogeneity and local
isotropy of the velocity are tested based on various criteria and, to an excellent
approximation, these properties are found to hold in the central region of turbulent
thermal convection. To our knowledge, few such experimental tests exist for any type
of turbulent flows, whether they are buoyancy-driven or not. Our results also show
that the circulation is more sensitive to local anisotropy than the velocity field itself.
By directly comparing CSFs with LSFs and TSFs measured in the same velocity field,
our results show that for low-order statistics (p � 5) no significant differences beyond
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experimental uncertainty are found among their corresponding scaling exponents.
However, for high-order statistics (p � 5), the anomalous scaling exponents of CSFs
become systematically smaller than those of LSFs and TSFs. This suggests that it is
possible that a new intermittency physics different from that for velocity increments
is required for circulation, which is manifested only in high-order statistics. Thus,
the question of whether velocity circulation has different anomalous scaling than the
velocity increments remains open. Clearly, further experimental and numerical studies
at higher Ra (Re) and higher-resolution are needed to settle this issue.
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work by the Research Grants Council of Hong Kong SAR under Grant Nos. CUHK
403705 and 403806.
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